An Efficient Synthetic Method of 11,12-Dihydroxyl Eudesmanolide Sesquiterpenoid from α-Santonin

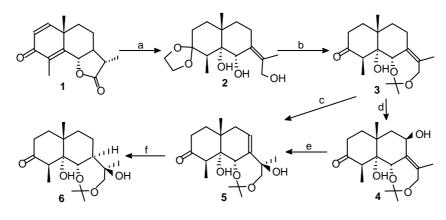
Wu Jiong XIA¹, De Run LI¹, Yong Qiang TU¹*, Ao Cheng CAO²

¹Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 ²Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100094

Abstract: A short and efficient procedure for introduction of tertiary hydroxyl to C-11 of eudesmanolide based on the rearrangement-oxidation of the exocylic double bond has been developed, which is synthetically valuable for a series of natural eudesmanolide sesquiterpenoids containing the 11,12-diol.

Keywords: Introduction, tertiary hydroxyl, rearrangement-oxidation.

The 11,12-dioxygenated eudesmanolide sesquiterpenoid is a large kind of naturally occuring sesquiterpenoids isolated from the medicinal plants, such as *J. glutinosa*¹ and *Flourensia heterolepsis*². In constrast to much investigation of their isolation and structure characterization, the less about their synthesis have been reported. One of the reason may be the difficult hydroxylation at C-11. For example, the synthesis of a simple natural product, kudtriol³, required thirteen steps of reactions for introduction such hydroxyl group. In our recent research, we have designed and developed a short and efficient procedure based on the rearrangement-oxidation of the intermediate containing allylic exocylic double bond with SeO₂/^tBuO₂H/CH₂Cl₂ system⁴.


Our approach began with the cheap and abundant material, α -santonin 1(as shown in **scheme 1**). One of the strategic consideration is the introduction of substable exocyclic 11,12-double bond, which is expected to rearrange to be endocylic one under some condition. Thus the key intermediate **2** was synthesized in our reported procedure⁵⁻⁷.

Initially, a directive oxidation of **2** with $\text{SeO}_2/^{t}\text{BuO}_2\text{H/CH}_2\text{Cl}_2$ could not provide the right product, but complicated mixture unidentified. So compound **2** was protected with acetone to get the acetonide **3**⁸. Upon treatment with $\text{SeO}_2/^{t}\text{BuO}_2\text{H/CH}_2\text{Cl}_2$, compound **3** was converted into single product **5** in 92% (based on the recovery of the starting material). Interestingly, when compound **3** was oxidized with $\text{SeO}_2/^{t}\text{BuO}_2\text{H}$ using

Wu Jiong XIA et al.

dioxane as solvent, a C₈-hydroxylated product **4** was got in high yield (95%). Furthermore, the only product **5** was obtained from the rearrangement of **4** with aqueous KOH. Stereoslective hydrogenation of **5** catalyzed by 10% Pd/C led to the compound **6** in 98%⁹. The stereochemistry of C₇ and C₁₁ of the compound **6** was determined by 2D-Noesy technique, which was identified with those existing in the natural products.

Scheme 1

Reagents and conditions:

a) ref. 5; b) acetone, PTS; c) SeO₂, ^tBuO₂H, CH₂Cl₂; d) SeO₂, ^tBuO₂H, dioxane; e) 30% KOH; f) 10% Pd/C, H₂.

Experimental

Preparation of 11-hydroxyl acetonide 5:

190 mg (0.61mmol) of **3** in 1 ml dichloromethane was added 45 mg SeO₂ followed by 0.19 ml ¹BuO₂H (75%) at 0 °C. Then the ice-water bath was removed and the mixture was stirred at r.t. for 10hrs., extracted with 2×15 ml CH₂Cl₂, washed with brine, dried over Na₂SO₄ and concentrated in vacuum. The residue was chromatographed (petroleum ether / AcOEt: 2/1) to afford 162 mg of **5** (93%, recovery of 25 mg starting material). Spectral data of **5**: ¹HNMR:1.17 (3H, s), 1.24 (3H, s), 1.29 (3H, d, J 7.7Hz), 1.37 (3H, s), 1.45 (3H, s), 1.5-2.4 (6H, m), 2.8-2.9 (1H, m), 3.34 (1H, d, J 12Hz), 3.63 (1H, d, J 12Hz), 4.79 (1H, brs), 5.91 (1H, d, J 6.3Hz). ¹³CNMR: 15.9, 20.6, 22.8, 25.1, 25.8, 33.8, 35.8, 37.9, 39.7, 53.6, 66.3, 70.3, 72.1, 78.9, 101.7, 123.4, 139.4, 213.1. EIMS, *m/z*(%): 306 (M⁺-18, 0.4), 248 (5.0), 218 (63.2), 203 (28.7), 175 (20), 160 (37.8), 111 (22.7), 109

(23.7), 59 (25.9), 55 (24.9), 43 (100). FAB-HRMS: found 325.2012, Cacld for $[C_{18}H_{29}O_5+H]:$ 325.2101.

Preparation of 8-hydroxyl acetonide 4:

100 mg (0.32mmol) of 3 in 1 ml dioxane was added 25 mg SeO₂ followed by 0.11 ml ¹BuO₂H (75%) at 0 °C. Then the ice-water bath was removed and the mixture was stirred at r.t. for 10hrs., extracted with 2×15 ml EtOAc, washed with brine, dried over Na₂SO₄ and concentrated in vacuum. The residue was chromatographed (petroleum ether / AcOEt: 2/1) to afford 84 mg of 4 (95%, recovery of 16 mg starting material). Spectral data of compound **4**: ¹HNMR: 1.26 (3H, d, J 8.0Hz), 1.39 (3H, s), 1.47 (3H, s), 1.53 (3H, s), 1.72 (3H, s), 1.89~2.88 (7H, m), 3.63 (1H, d, J 15.6Hz), 4.64 (1H, d, J 15.6Hz), 4.85 (1H,m), 5.08 (1H, s). ¹³CNMR: 15.1, 17.6, 23.3, 24.5, 24.8, 33.8, 35.6, 37.3, 43.4, 52.9, 65.4, 66.9, 70.6, 81.0, 101.5, 134.6, 135.6, 215.0. EIMS, *m*/*z*(%): 325 (M⁺,3), 249 (100), 231 (23), 203 (13), 133 (14), 109 (24), 91 (18); FAB-HRMS: found 325.2004, Cacld for [C₁₈H₂₉O₅+H]: 325.2014.

11,12-dihydroxyl eudesmanolide sesquiterpenoid 6:

A suspension of 25 mg(0.077 mmol) of **5** and 10 mg of 10% palladium on carbon in 1 ml methanol was hydrogenated for 24 hours at r.t. and then filtered. The filtrate was evaporated in vacuum and chromatographed on silicon column (petroleum ether / AcOEt: 3/1) to get 24.6 mg of **5** (98%). Spectral data of **6**: $[\alpha]_D$ = +58. ¹HNMR: 1.18 (3H, s), 1.25 (3H, d, J 8.0Hz), 1.34 (3H, s), 1.37 (3H, s), 1.45 (3H, s), 1.55-2.66 (10H, m), 3.80 (1H, d, J 10Hz), 3.83 (1H, s, OH), 4.10 (1H, d, J 10Hz), 4.67 (1H, brs). ¹³CNMR: 14.8, 20.0, 20.9, 22.1, 26.5, 27.7, 34.3, 34.8, 35.7, 36.5, 46.7, 53.2, 68.6, 75.1, 78.3, 84.7, 110.2, 215.3. EIMS, *m/z* (%): 326 (M⁺, 2.6), 268 (2.0), 250 (28.8), 233 (10.5), 165 (12.1), 140 (21.6), 126 (13.6), 115 (100), 109 (11.5), 97 (15). FAB-HRMS: found 327.2101, Cacld for [C₁₈H₂₉O₅+H]: 327.2259.

Acknowledgments

We are grateful for financial support from the National Natural Science Foundation of China (NO.29972019), Educational Council Foundation (No.99208) and Excellent Young Teacher Foundation.

References

1. J. P. Tereas, A. F. Berrero, A. S. Feliciano, M. Grande, M. Medarde, *Tetrahedron Letters*, **1978**, 4141.

Wu Jiong XIA et al.

- 2. F. Bohlmann, J. Jakupovic, Phytochemistry, 1979, 18, 1189.
- 3. R. S. Harapanhalli, J. Chem. Soc., 1988, 3149.
- 4. N. R. Schmuff , B. M. Trost, J. Org. Chem., 1983, 48, 1404.
- 5. Y. Q. Tu, L. D. Sun, Tetrahedron Lett., 1998, 39, 7935.
- L. D. Sun, W. J. Xia, H. F. Guo, Y. Q. Tu, D. G. Wu, X. D. Luo, Y. B. Ma, M. H. Qiu, X. J. Hao, Synth. Comm. 1999, 29, 1107.
- 7. L. D. Sun, Y. Q. Tu , W. J. Xia, Synth. Comm. 1998, 28, 3751.
- 8. P. Rollin , J. R. Pougny, Tetrahedron, 1986, 42, 3479.
- 9. P. A. Aristoff, P. D. Johnson, A. Harrison, J. Am. Chem. Soc. 1985, 107, 7967.

Received June 5, 2000